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« Recent work on the RLA

 Tracking in linear non-scaling FFAGs

« Electron model for linear non-scaling FFAG (EMMA)
« Analysis of an isochronous FFAG

« Analysis of a scaling FFAG scheme
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The Study lla Scheme
Dogbone RLA
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Dogbone RLA
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o Full linear design exists

0 Needs to be converted into real terms, costed
0 Compare cost per GeV to FFAGs

« Misalignment and gradient error sensitivity studied

0 Orbit distortion manageable with 1 mm magnet displacements

0 Quad field tolerances 0.2%

o Next steps

0 Add sextupoles to get chromatics right
0 Look at beam with finite energy spread
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Tracking in Linear Non-Scaling FFAGs

« 6-D tracking studies have begun on linear non-scaling FFAGSs.
Most codes can’t handle FFAGs well.

0 Most of this done by European collaborators (Machida, Méot,
Lemuet)

« With real acceleration, particles with high transverse amplitude
aren’t accelerated properly
0 Not a problem with uniform acceleration (what we tested before)
0 Low transverse amplitudes are fine

« Cause: time of flight depends on amplitude
0 Can predict the dependence:

dl’ 5 dv
47~ “PaE
0 No effect in scaling FFAGS!
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Time of Flight Dependence on Amplitude
Time of Flight Curves
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« How will we address the problem?

0 Adjust machine parameters to open up the channel more

o More voltage

0 Longer ring

0 Higher harmonic RF
0 Costs money

0 Adjust phase space more carefully to optimize what we have

0 Current model assumes that time of flight is perfectly parabolic
0 Find best area of overlap (right now, using optimum for low
amplitude)
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FFAG Electron Model By oo

« Linear non-scaling FFAGs have never been built
« Create an inexpensive model of a linear-nonscaling FFAG
o In the last year we have

0 Refined the experimental goals of the machine

0 Settled on lattice specifications
0 Begun to look at hardware
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« Study the unique longitudinal dynamics in fixed-frequency linear
nonscaling FFAGs

« Study rapid crossing of many weak resonances that occurs in
linear nonscaling FFAGSs

« Study the effect of errors on the performance of linear nonscaling
FFAGS

« Vary machine parameters over a significant range to study these
effects as a function of machine parameters

1 RF frequency (part in 10°)
0 Magnet gradient (£25%) and dipole field (+50%)
0 Magnet displacement and gradient errors

« Compare results to simulation
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« We have a well-defined baseline lattice

« 42 cell lattice, approximately 16 m circumference
« Accelerating in 14 turns or less

« Magnets with approximately 0.2 T pole tip fields

0 Gradient dipole
0 Shifted quadrupoles
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Acceleration Schemes
Isochronous FFAGs (Rees)

« Replace the FFAGs in the NFMCC scheme with “isochronous
FFAGS”

 Linear non-scaling FFAGs have a time of flight that depends on
energy
0 Difficult to keep bunch synchronized with the RF
0 Puts a lower limit on the required voltage
0 Leads to above described problems

« Use nonlinear magnets to make the FFAG isochronous over the
entire energy range
0 Original idea from Rees (RAL)

« Can also use two types of cells: longer cells with RF, shorter cells
without (UK baseline)
0 Can reduce machine cost
0 Need to match between: challenge
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Isochronous FFAGs with Insertions CAING
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Isochronous FFAG: Analysis Te
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« Time of flight variation is exceptionally small
0 Factor of 10 below natural value

« In my computation, vertical tunes go unstable at high energy
0 Possible cause: Rees uses second-order edge effect which |
don’t
« Tracking results (Meot/Lemuet)

0 Beam loss at high energy end

0 Appears to come from hitting a resonance
0 Note it occurs about where | say the lattice goes unstable

0 Highly nonlinear fields at high energy could also be driving it
Into the resonance

« Not performing acceptably at this point
0 Work has not been put into improving it as yet
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Isochronous FFAG
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« The NuFactJ scheme (KEK, Japan)

« Scaling FFAGs only for entire neutrino factory, from capture to (not
Including) storage ring

4 stages, 0.3-1 GeV/¢, 1-3 GeV/e, 3-10 GeV/e, 10-20 GeV/c

o Idea: this may be inexpensive
0 Avoids the entire front end

« Scaling FFAGs can have large dynamic aperture

0 Arbitrarily large energy acceptance
0 No resonance crossing issues
o Will it be large enough? Nonlinearities.

« Use low-frequency RF to accelerate
0 Lots of voltage needed at low frequency
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Scaling FFAGs

FFAGs on Tokal Campus
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o Lattices presented in the NuFactJ report were to give the idea
0 | attempted to replicate the NuFactJ lattices
0 Lattices were not even stable
0 They were constructed out of standard sector magnets, not
FFAG magnets
o | produced a set of lattices

0 Used true FFAG magnets
0 Matched the tunes in the NuFactJ report

« Result had large costs

0 10-20 GeV was 83% of the entire Study lla cost, compared with
5% for linear non-scaling FFAG

0 Reason: large apertures (35—-45 cm), high fields (upt0 9.4 T)

0 Lower energy lattices should have come out normal conducting
(didn’t)
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« Further optimization improved 10-20 GeV lattice

0 2002 lattices from LBNL FFAG Workshop: 18% of the entire
Study lla cost, lower due to smaller apertures and fields

e Note: no cavities in cost!

0 RF systems used
0 0.75 MV/m average over ring, air gap, 5-10 MHz
0 First ring may be variable frequency
0 New type of magnetic alloy core
0 All this needs more careful specification, R&D, costing
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Conclusions By oo

« We have an RLA lattice up to 5 GeV, and analysis is proceeding.
« We are trying to compare different FFAG systems

0 Linear non-scaling FFAGs are having problems with large
amplitude particles. Know how to address, additional costs.

0 Isochronous FFAGSs have serious dynamic aperture problems,
but more work may address this.

0 Scaling FFAGs look costly, but optimization seems to be helping
that. RF may be an issue.

« We have and are continuing to develop a good experimental plan
and design for a model to study linear non-scaling FFAGs

« WWe have significant international collaboration in this effort
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